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Chl-a from sea ice cores

* Chl-ais awidely
measured proxy for
biomass

e Methods

— lce core extraction
— Cutting core into sections coring party

— Melting in at < 5°Cin the
dark

— Filtration
— Fluorometric analysis
— Get Data!

preparing an ice core

base of an ice core
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The ASPeCt-BIO dataset

Chl (mg/m2)
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Distribution of cores
around Antarctica

4,06

39 campaigns (1983-2008) in pack ice

Data origin: publications, cruise reports,
data repositories, private contributions

Teams from: Australia, Belgium,
Germany, Russia, UK, USA

1300 integrated chlorophyll [mg/m?2]

990 chlorophyll profiles with more than
two sections [ug/I]

8245 chlorophyll samples [pg/I]

Integrated chlorophyll
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Chl-a from sea ice cores
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30% of cores have
less than 1mg chl-a/m?2
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solid = mean
dots = std

1 Light

2 Nutrient supply mechanisms,
e.g., brine dynamics, vary in time

3 Physical conditions (T and S) are
not always optimal for ice algal
growth

4 Snow

5 Water column
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month
Mean seasonal cycle of incoming PAR
in the Southern Ocean sea ice zone

@ PAR

SNOW

ice

Incoming PAR computed as a function of
latitude, day of year, cloud fraction,
humid |ty [Shine, 1984; Vancoppenolle et al., 2011]

Averaged over the entire sea ice zone
(using SSMI data)

Incoming light takes off in September
and shuts off in May

Small latitude variations



2 C Brine dynamics and nutrient supply

If unstable brine
gradient in sea ice,
nutrient fluxes are

/s possible.
Convection starts
below -2.7°C
_ _ f_—_S_%) % [Jardon et al., in revision]
’&/ If no unstable gradient

N : : :
CONVECTION (wfﬁa) STABLE BRINES / PERCOLATION IN sea ice, no nutrient

o fluxes are possible,
probable limitation by
one of the nutrients



3 ¢ Temperature and brine salinity

Photosynthetic efficiency

b
decreases at low temperatures ¢ Normalized data
and high salinities. Al

]
o= 0.6
. L = 5°C
Brine salinity increases fast S o4 \ /
with temperature and this B oz \\
effect outcompetes . R
0 20 40 60 80 100
temperature. S et
Normalized ice algal growth
At -5°C, growth is 10 x smaller in mesocosm experiments
than at -2°C as a function of solution salinity

(Arrigo and Sullivan, 1992)



Temperature constraints

Temperature

10| brine convection possible -

brine salinity

1234567 8 9101112

Mean seasonal cycle of 2m air temperature
based on NCEP-NCAR data
(1983-2008)

Air temperature provides two
constraints on algal growth

Air temperature frequently drops
below -3 °C from February to
November

-> nutrient supply by brine
convection possible

Air temperature does not go above -
5° from April to October

-> brine salinity stress on ice algae
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light and air temperature
provide two key controls on
ice algae

remaining questions:

why high chl-a in January?
snow?

water column?

forced convection due to ice
motion?

nut supply from storms ?

why remaining chl-a in winter?



Normalized vertical chl-a profile
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profile-type classification
contribution to integrated chl-a



Dependence on ice thickness

Number of cores
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Limitations

Space and time coverage is uneven
Chl-a in sea ice is patchy

Humans who core avoid thick ice
Material is lost during ice coring

Varying chl-a/C ratios



Conclusions & Perspectives

e

The ASPeCt-BlO data set has
large-scale signals

Seasonal peaks in spring and late
summer

— role of light, temp & nutrients

— role of snow and water column?

The three community types
(surface, internal, bottom)
equally contribute to biomass

Vertical profile of chl-a changes
with ice thickness

e

ROVs to tackle patchiness issues
and measure biomass at floe
scales

Future changes in winter ice
thickness distribution will affect
food availability for krill

What about the Arctic ?

Modelling: multi-layer models
have to be used

DATA AVAILABLE SOON VIA THE
ASPECT PORTAL (Klaus)



