Chl-a in Antarctic sea ice from historical ice core data

K. M. Meiners^{1,} **M. Vancoppenolle²**, S. Thanassekos³ ¹ ACE-CRC, Hobart, Tasmania ² CNRS, LOCEAN ³ CCAMLR, Hobart, Tasmania

G. S. Dieckmann, D. N. Thomas, J.-L. Tison, K. R. Arrigo, D. Garrison, A. McMinn, D. Lannuzel, P. van der Merwe, K. Swadling, W.O. Smith Jr., I. Melnikov, B. Raymond

Chl-a from sea ice cores

- Chl-a is a widely measured proxy for biomass
- Methods
 - Ice core extraction
 - Cutting core into sections
 - Melting in at < 5°C in the dark
 - Filtration
 - Fluorometric analysis
 - Get Data!

coring party

preparing an ice core

base of an ice core

The ASPeCt-BIO dataset

Distribution of cores around Antarctica

39 campaigns (1983-2008) in pack ice

Data origin: publications, cruise reports, data repositories, private contributions

Teams from: Australia, Belgium, Germany, Russia, UK, USA

1300 integrated chlorophyll [mg/m2]
990 chlorophyll profiles with more than two sections [μg/l]
8245 chlorophyll samples [μg/l]

Integrated chlorophyll

 $I_{chl} =
ho_i /
ho_w \int_0^{h_i} C_{chl}(z) dz \quad [\mathrm{mg~chla}/\mathrm{m}^2]$

Chl-a from sea ice cores

Seasonality

1 Light

2 Nutrient supply mechanisms, e.g., brine dynamics, vary in time

3 Physical conditions **(T and S)** are not always optimal for ice algal growth

4 Snow

5 Water column

solid = mean dots = std

1 – Light

Incoming PAR computed as a function of latitude, day of year, cloud fraction, humidity [Shine, 1984; Vancoppenolle et al., 2011]

Averaged over the entire sea ice zone (using SSMI data)

Incoming light takes off in September and shuts off in May

Small latitude variations

2 – Brine dynamics and nutrient supply

If unstable brine gradient in sea ice, nutrient fluxes are possible. Convection starts below -2.7°C

[Jardon et al., in revision]

If no unstable gradient in sea ice, no nutrient fluxes are possible, probable limitation by one of the nutrients

3 – Temperature and brine salinity

Photosynthetic efficiency decreases at low temperatures and high salinities.

Brine salinity increases fast with temperature and this effect outcompetes temperature.

At -5°C, growth is 10 x smaller than at -2°C.

Normalized ice algal growth in mesocosm experiments as a function of solution salinity (Arrigo and Sullivan, 1992)

Temperature constraints

Mean seasonal cycle of 2m air temperature based on NCEP-NCAR data (1983-2008) Air temperature provides two constraints on algal growth

Air temperature frequently drops below -3 °C from February to November

-> nutrient supply by brine convection possible

Air temperature does not go above - 5° from April to October

-> brine salinity stress on ice algae

Summary

light and air temperature provide two key controls on ice algae

remaining questions:

why high chl-a in January? snow? water column? forced convection due to ice motion? nut supply from storms ?

why remaining chl-a in winter?

Normalized vertical chl-a profile

profile-type classification contribution to integrated chl-a

Dependence on ice thickness

Limitations

- Space and time coverage is uneven
- Chl-a in sea ice is patchy
- Humans who core avoid thick ice
- Material is lost during ice coring
- Varying chl-a/C ratios

Conclusions & Perspectives

- The ASPeCt-BIO data set has large-scale signals
- Seasonal peaks in spring and late summer
 - role of light, temp & nutrients
 - role of snow and water column?
- The **three community types** (surface, internal, bottom) equally contribute to biomass
- Vertical profile of chl-a changes with ice thickness

- **ROVs** to tackle patchiness issues and measure biomass at floe scales
- **Future changes** in winter ice thickness distribution will affect food availability for krill
- What about the **Arctic** ?
- Modelling: multi-layer models have to be used
- DATA AVAILABLE SOON VIA THE ASPECT PORTAL (Klaus)